2010 Vol. 12, No. 14 3242-3245

Two-Component Approach Toward a Fully Substituted N-Fused Pyrrole Ring

Dmitri Chernyak, Cathy Skontos, and Vladimir Gevorgyan*

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061

vlad@uic.edu

Received May 24, 2010

ABSTRACT

An efficient two-component palladium-catalyzed arylation/cyclization cascade approach toward a variety of N-fused pyrroloheterocycles has been developed. This transformation proceeds via the palladium-catalyzed coupling of aryl halides with propargylic esters or ethers followed by the 5-endo-dig cyclization leading to highly functionalized pyrroloheterocycles in good to excellent yield.

Nitrogen-containing heteroaromatic molecules and their analogues are pharmaceutically important scaffolds, broadly present in naturally occurring and synthetic biologically active molecules.¹ For example, molecules containing indolizine and other closely related cores exhibit a wide array of biological activities, including cytotoxicity,² multidrug resistance (MDR) reversal in some cancer cell lines,³ and immunomodulation.⁴

In this regard, transformations that utilize readily available substrates to provide access to densely substituted pyrroloheterocycles are in high demand.⁵ Previously, our group reported silver-catalyzed cycloisomerization of propargyl heterocycles as a route to 1,3-disubstituted N-fused heterocycles (Scheme 1, eq 1).⁶ An alternative protocol is based on the gold-catalyzed migratory cycloisomerization of pro-

Scheme 1. Approaches Toward Indolizines with Different Substitution Patterns

$$C \stackrel{\text{(D)}}{\downarrow} R^2 \qquad Ag^l \qquad Ag^{(B)} \qquad (1)$$

OTBS

$$C_{N}^{(D)}$$
 $C_{N}^{(D)}$
 $C_{N}^{(D)}$

$$G = H, SiR_3, SnR_3, GeR_3$$

pargyl ethers into various types of 1,2-disubstituted N-fused heterocycles (eq 2).⁷ Although these methods are general with respect to the heterocyclic core, these approaches are limited to the synthesis of 1,3- or 1,2-disubstituted indolizines, while either the C-2 or C-3 position remains unfunctionalized. This problem was recently mitigated by employing stoichiometric amounts of iodine,^{5f-h} followed by cross-

^{(1) (}a) Bailly, C. Curr. Med. Chem. Anti-Cancer Agents **2004**, 4, 363. (b) Fan, H.; Peng, J.; Hamann, M. T.; Hu, J.-F. Chem. Rev. **2008**, 108, 264.

^{(2) (}a) Ishibashi, F.; Tanabe, S.; Oda, T.; Iwao, M. *J. Nat. Prod.* **2002**, *65*, 500. (b) Liu, R.; Liu, Y.; Zhou, Y.-D.; Nagle, D. G. *J. Nat. Prod.* **2007**, *70*, 1741

^{(3) (}a) Pla, D.; Marchal, A.; Olsen, C. A.; Francesch, A.; Cuevas, C.; Albericio, F.; Alvarez, M. *J. Med. Chem.* **2006**, *49*, 3257. (b) Chittchang, M.; Batsomboon, P.; Ruchirawat, S.; Ploypradith, P. *ChemMedChem* **2009**, *4*, 457.

^{(4) (}a) Facompre, M.; Tardy, C.; Bal-Mahieu, C.; Colson, P.; Perez, C.; Manzanares, I.; Cuevas, C.; Bailly, C. *Cancer Res.* **2003**, *63*, 7392. (b) Marco, E.; Laine, W.; Tardy, C.; Lansiaux, A.; Iwao, M.; Ishibashi, F.; Bailly, C.; Gago, F. *J. Med. Chem.* **2005**, *48*, 3796.

Table 1. Optimization of Cascade Approach

entry	X	Pd	base	solvent	additive	yield, $\%^b$
1	Ĩ	PdCl ₂ (PPh ₃) ₂	NEt_3	DMF	_	49
2	Ī	$PdCl_2(PPh_3)_2$	NEt_3	DMA	_	46
3	Ι	$PdCl_2(PPh_3)_2$	$\mathrm{NEt_{3}}$	NMP	_	47
4	Ι	$PdCl_2(PPh_3)_2$	NEt_3	MeCN	_	34^c
5	Ι	$PdCl_2(PPh_3)_2$	NEt_3	$_{ m DMF}$	LiCl	54
6	Ι	PdCl ₂ (PPh ₃) ₂	NEt_3	$_{\mathrm{DMF}}$	TBAC	57
7	Ι	$PdCl_2(PPh_3)_2$	NEt_3	$_{\mathrm{DMF}}$	TBAB	60
8	Ι	PdCl ₂ (PPh ₃) ₂	NEt_3	$_{\mathrm{DMF}}$	TBAI	62
9	Ι	$PdCl_2(PPh_3)_2$	K_2CO_3	$_{\mathrm{DMF}}$	TBAI	69
10	I	PdCl ₂ (PPh ₃) ₂	K_2CO_3	\mathbf{DMF}	\mathbf{TBAI}^d	72
11	Br	$PdCl_2(PPh_3)_2$	K_2CO_3	DMF	TBAI^d	26

^a Reactions were run in the precence of 5 mol % of catalyst in appropriate solvent (0.33 M) at 120 °C for 4 h. ^b GC/MS yields. ^c Reaction was performed at 90 °C. ^d Reaction was run with additional 40 mol % of PPh₃.

coupling steps. Herein, we report a Pd-catalyzed two-component arylation/cyclization cascade approach toward 1,2,3-trisubstituted N-fused heterocycles in good to excellent yields (eq 3).⁸

We hypothesized that Ar-Pd-X species would undergo carbopalladation of the propargylic moiety of 1 with subsequent 5-endo-dig cyclization to produce 2 (eq 3).

To test this idea, the easily accessible propargyl-containing pyridine 1^9 was first subjected to the palladium-catalyzed arylation/cyclization reaction. Employing iodobenzene as the electrophilic component led to formation of the desired indolizine 2a in 49% yield (Table 1, entry 1). Attempts to substitute DMF with other solvents were not particularly successful (entries 2-4). Utilizing different lithium and ammonium salts led to a significant improvement in the reaction yields (entries 5-8). Switching the base from NEt₃ to K_2CO_3 was also beneficial (entry 9).

Table 2. Arylation/Cyclization Cascade Reactions of Propargylic Esters 1^a

entry	2		yield, %b	entry	2		yield, % ^b	entry	2		yield, % ^b
1	OAc N n-Bu	2a	72	8	OPiv Ph Ph	2h	69	15	OPiv N ————————————————————————————————————	20	93
2	$\bigcap_{N} \operatorname{OAc} -\operatorname{CO}_2 \operatorname{Me}$	2b	76	9	OPiv Ph p-Tol	2i	68	16	OPiv CO ₂ Me	2p	88
3	OPiv Ph n-Bu	2c	94	10	OPiv Ph	2j	96	17	OPiv Ph	2q	71
4	OPiv Ph n-Hex	2d	77	11	OPiv N————————————————————————————————————	2k	87	18	OPiv CF ₃	2r	74
5	OPiv Ph n-Oct	2e	94	12	OPiv N—OMe	21	53	19	OPiv Ph n-Bu	2s	78
6	OPiv Ph t-Bu	2f	50	13	n-Bu	2m	70	20	OPiv ——CO ₂ Me	2t	88
7	OPiv Ph CH ₂ CH ₂ Ph	2g	94	14	OPiv CF ₃	2n	90	1	n-Bu	21	00

^a All reactions were performed on 0.5 mmol scale in DMF (0.33 M) at 120 °C. ^b Yield of the isolated product after flash chromatography on silica gel.

Org. Lett., Vol. 12, No. 14, 2010

Scheme 2. Arylation/Cyclization Cascade Reactions of Propargylic Ethers 3

Furthermore, using triphenylphosphine as an additive led to the formation of **2a** in 78% yield (entry 10). Employment of bromo-benzene under these conditions proved to be less efficient producing indolizine **2a** in 29% yield only (entry 11).

Next, under the optimized conditions, the scope of this cascade cyclization was examined (Table 2). Thus, acetyloxy and pivalyloxy-propargylic esters possessing alkyl (entries 1–7), aryl (entries 8 and 9), or alkenyl (entry 10) substituents at the triple bond underwent smooth conversion to give the corresponding heterocycles **2a**–**j** in good to excellent yields. To provide a handle for further functonalization, pivalates were chosen over acetates due to their greater potential to participate in Suzuki–Miyaura¹⁰ and Kumada^{5e} coupling reactions.

The generality of this process was expanded by utilization of a variety of functionalized iodobenzenes which uneventfully cyclized into the corresponding indolizines $2\mathbf{k}-\mathbf{p}$ (entries 11–16). Notably, this reaction proceeded equally efficiently with other heterocyclic cores; quinoline and isoquinoline propargylic esters were successfully utilized in this transformation providing access to tricyclic cores $2\mathbf{q}-\mathbf{t}$ in a highly efficient manner (entries 17–20).

It was also found that propargylic phenylethers **3** could be employed in this transformation (Scheme 2). Interestingly,

bromobenzenes performed equally well in this process (4a-c). Similarly, the cascade cyclization of propargylic silylether 3 gave the corresponding indolizine 4e in 73% yield.

Presumably, this palladium-catalyzed arylation/cyclization reaction proceeds through a coordination of the triple bond of an alkyne 1 with ArPdX, triggering the 5-endodig cyclization by the nucleophilic attack of the pyridyl nitrogen, leading to the formation of zwitterionic adduct 5 (Scheme 3). The latter, upon deprotonation/tautomer-

Scheme 3. Proposed Mechanism

ization and subsequent reductive elimination, ¹¹ would give product **2**.

In summary, we have developed a practical and efficient two-component coupling method toward fully substituted fused pyrroloheterocycles, including indolizines, pyrroloquinolines, and pyrroloisoquinolines. This method is comple-

3244 Org. Lett., Vol. 12, No. 14, 2010

^a Reaction was performed under optimized conditions reported in Table 2.

^{(5) (}a) Kel'in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc. 2001, 123, 2074. (b) Smith, C. R.; Bunnelle, E. M.; Rhodes, A. J.; Sarpong, R. Org. Lett. 2007, 9, 1169. (c) Hardin, A. R.; Sarpong, R. Org. Lett. 2007, 9, 4547. (d) Yan, B.; Zhou, Y.; Zhang, H.; Chen, J.; Liu, Y. J. Org. Chem. 2007, 72, 7783. (e) Schwier, T.; Sromek, A. W.; Yap, D. M. L.; Chernyak, D.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 9868. For a catalyst-free approach toward indolizines, see: (f) Chernyak, D.; Gadamsetty, S. B.; Gevorgyan, V. Org. Lett. 2008, 10, 2307. (g) Kim, I.; Choi, J.; Won, H. K.; Lee, G. H. Tetrahedron Lett. 2007, 48, 6863. (h) Kim, I.; Won, H. K.; Kim, J.; Lee, G. H. Tetrahedron 2007, 63, 12954. (i) Kim, I.; Kim, S. G.; Kim, J. Y.; Lee, G. H. Tetrahedron Lett. 2007, 48, 8976.

⁽⁶⁾ Seregin, I. V.; Schammel, A. W.; Gevorgyan, V. Org. Lett. 2007, 9, 3433.

⁽⁷⁾ Seregin, I. V.; Gevorgyan, V. J. Am. Chem. Soc. 2006, 128, 12050.
(8) When this manuscript was in preparation, a related report on synthesis of the indolizinone core appeared: Kim, I.; Kim, K. Org. Lett. 2010, 12, 2000.

⁽⁹⁾ See Supporting Information for a detailed preparative procedure.

⁽¹⁰⁾ Quasdorf, K. W.; Tian, X.; Garg, N. K. J. Am. Chem. Soc. 2008, 130, 14422.

^{(11) (}a) Zeni, G.; Larock, R. C. *Chem. Rev.* **2004**, *104*, 2285. (b) Cacchi, S.; Fabrizi, G. *Chem. Rev.* **2005**, *105*, 2873. (c) Zeni, G.; Larock, R. C. *Chem. Rev.* **2006**, *106*, 4644.

mentary to the previously developed approaches^{6,7,12} toward mono- and disubstituted N-fused pyrroloheterocycles.

Acknowledgment. We gratefully acknowledge the financial support of the National Institutes of Health (GM-64444 and 1P50 GM-086145).

(12) Seregin, I. V.; Schammel, A. W.; Gevorgyan, V. Tetrahedron 2008, 64, 6876.

Supporting Information Available: Experimental details and characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL1011949

Org. Lett., Vol. 12, No. 14, 2010